close

Padam Mobility

4 essential steps for an effective demand-responsive transport: the feasibility study and the pilot

étapes essentielles pour transport à la demande

The efficiency and success of a Demand-Responsive Transport (DRT) service is based on several steps. In this article, we will discuss the first two essential steps for an effective DRT: the feasibility study and its simulations, and then the pilot.

What is a dynamic Demand-Responsive Transport?

The aim of a dynamic DRT is to rationalise public transport by fine-tuning supply to demand with more interesting economic and ecological benefits. Vehicles, reserved via a mobile application, a website or a call centre, replace under-used or non-existent fixed lines. Their route is optimised thanks to algorithms.

Step 1: the feasibility study and the simulations

The goal of the feasibility study is to understand the operation and use of DRT on a territory and to question its rationality from an economic point of view. It is used to define supply and demand scenarios, obtain reliable performance indicators, and understand how these evolve according to the different scenarios defined.

The simulations, preferably taken from the DRT platform, make it possible to put figures on the different scenarios based on reservation data, demographic data, transport surveys or telephone data, making it possible to anonymously track journeys within a territory. The simulations operate in-vivo and also make it possible to validate the economic relevance of the service, to ensure the correct configuration of the offer and to identify the risks.

What indicators should be taken into account at this stage?

  • Quality of service: waiting time, percentage of requests served and average detour rate: how do users feel about the quality of service? Are they satisfied enough to re-use the service on a regular basis?  
  • Cost of service: number of people per hour per vehicle per trip, mileage, number of vehicles used and maximum vehicle occupancy rate.

What questions should be asked before moving on to the next step?

  • Is the service financially sustainable and acceptable to the community?
  • Is the project politically tenable?
  • Will users and operational teams agree to host an innovative project such as DRT?

Read more about the feasibility study and simulations carried out for Aviapolis (Helsinki, Finland) by Padam Mobility

Step 2: the pilot

The pilot, whose watchword is agility, is used to test, measure and iterate over short cycles. The pilot is used to validate the relevance of the new DRT service for the need for mobility, the digital transition to a SaaS tool and the strategies and means of communication with the population. It also makes it possible to test the uses of DRT and to understand the issues involved (traction, quality of service, operational handling, etc.).

What indicators should be taken into account at this stage?

  • Quantitative data: number of visitors, distribution of the reservation application & website VS call centre, number of passengers per vehicle and per commercial trip, quality of service.
  • Qualitative data: human transition and change management, satisfaction surveys.
  • Network balance: frequentation of non DRT lines that pass nearby.

What questions should be asked before moving on to the next stage?

  • What is the trend? Is it stable?
  • How is the economic balance of the service?
  • What is the capacity to replicate the service operationally in other areas, possibly with different operations or uses? 

Learn more about the pilot carried out for Keolis in Orleans by Padam Mobility

Find out how to build an efficient DRT

Lire la suite

Between reality and science fiction: Will Demand-Responsive Transport be autonomous?

Autonomous Demand-Responsive Transport

Will Demand-Responsive Transport be autonomous? The Demand-Responsive autonomous vehicle has a unique disruption potential. Given the very many ongoing projects with equipment manufacturers and GAFAs, its implementation is almost palpable. However, if the technology on which Demand-Responsive Transport is based is now perfectly mastered, autonomy adds an additional operating complexity, especially in sparsely populated areas. Explanations.

Autonomous Demand-Responsive: current projects

Autonomous Demand-Responsive Transport is a transformational innovation that mobilizes many companies, startups and large groups.

Freight transportation: it will still take time before it democratizes but its potential is gigantic thanks to the growth of the e-commerce (remember that Amazon has its own freight airline which is constantly developing). If tomorrow we can do without a driver or pilot for all or part of the journey, carriers will then be able to gain in costs and flexibility. To achieve this, Boeing is launching with its subsidiary Boeing HorizonX, Tesla is making the buzz with its cybertruck and Thales is developing autonomous trains.

Intra-campus mobility: this is a subject which is operational and which is already working in a real situation, as the Belgian example shows with the site of the Solvay company. The objective is to complete the existing offer to set up shuttles in a university campus, a hospital site, a research center or a park. The route is standardized and involves few risks and interactions with other vehicles. We can also mention autonomous delivery vehicles, as it is the case in Virginia on the George Mason University campus which authorized 25 delivery robots capable of delivering meals to students. At any time, they drive on the sidewalks, avoid obstacles and pedestrians, and only the person who placed the order can access their meal inside the robot.

People transportation: Most GAFAs invest in it. On the Alphabet side, the parent company of Google, it is its subsidiary Waymo which works on it. However, this still only affects a few areas of the city of Phoenix in the United States. Many other startups are working on the subject, including the French Navya, Prophesee and AV Simulation, in particular on software management, artificial intelligence, cameras, detectors and other radars that will make these vehicles live.

Can we really do it without drivers?

Spoiler alert: no. At least not in the short or medium term. But before going into details, you have to understand what is meant by autonomous vehicle with levels which can be variable:

  • Level 1 is the minimum degree of autonomy which is characterized by the simple presence of a cruise control in a conventional vehicle.
  • Level 2 adds intelligent sensors which slow the vehicle down according to the behavior of other vehicles and which force it to stay within the limits of the traffic lanes. The driver must always have his hands on the steering wheel.
  • Level 3 allows the vehicle to control acceleration, deceleration and direction, but the driver must be ready to take over when needed.
  • Level 4 authorizes driving autonomously in certain situations known by the vehicle, such as a long journey on the highway for example, or in certain cities that are particularly well mapped and connected. But as soon as the vehicle leaves this zone, the driver must take over.
  • Level 5 does not need a human driver. The vehicle does everything, all on its own, and does not need a steering wheel. The latest example to date is the Cruise developed by a GM subsidiary in the United States, but which remains in prototype form.

Today, all the experiments require an operator on board, which kills the promise of an autonomous public transport, both from a technological point of view and from a financial point of view. On the other hand, in the current context, nobody is yet ready to accept a driverless journey, even less when it comes to collective public transport. In the United States, half of Americans think that autonomous cars are more dangerous than traditional cars. A situation which may change in the future, but which means accepting to get in a driverless plane or to leave your children on a driverless school bus.

Autonomous and driverless Demand-Responsive Transport is a great promise on paper, because its model is very flexible. If the drivers disappearance is not yet up to date, this remains a goal for a lot of companies.. 

Autonomous vehicle on demand: the question of the “where” more than the “when”

The question of the availability of autonomous Demand-Responsive Transport is not temporal, but geographic. To say that the autonomous car will be available in 2025 or 2030 does not make sense, because it will not be able to drive itself everywhere or all the time. In some places, an autonomous car may only be so 20-30% of the time. Think in particular of urban hypercenters whose multiplicity of modes of transport could make the circulation of an autonomous vehicle incompatible in the short term. In low-density areas, frequent traffic on small, sometimes winding country roads and the many white areas (areas without internet connection) make it necessary to have a human on board. In addition to driving the Demand-Responsive Transport vehicle, it is often asked to the latter to know and master the territory in which the service is offered. Padam Mobility’s smart and dynamic Demand-Responsive Transport solutions mainly improve the mobility needs of the populations located just outside urban hypercenters. For these populations, and in particular the elderly with a precarious mobility, the contact with the driver of the vehicle still represents a highly valued human tie.

As specialists in artificial intelligence, the Padam Mobility teams of course remain in close connection with the autonomous vehicle environment and explore possible applications to the most relevant use cases.

 

See how to switch from Smart Mobility to Fair Mobility thanks to the Demand-Responsive Transport

Lire la suite
1 10 11 12 13 14 15
Page 12 of 15